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on the Distribution of Observed and Calculated Structure Factors* 
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The problem of the probability distribution of the observed and calculated structure factors for the 
general case when the latter include not only a part of the structure (P out of a total of N atoms), but 
also when these P atoms have finite errors Arj, is considered in this paper. This forms essentially an 
extension of the theory developed in the earlier parts where, however, only two limiting situations were 
considered, namely one in which the P atoms have no errors (related case) and the other in which the 
errors are very large (unrelated case). It is found that there is a formal identity in the mathematical 
results for the distributions arising out of errors in atomic coordinates and out of difference in number 
of atoms, which leads to elegant results for the general case. The results of the earlier parts, in parti- 
cular those in terms of the normalized variables (parts II to IV), could be taken over completely to the 

P N 
2 __ 2 2 present case with the only change that the parameter al( -Zfs /Z fs )  of the earlier parts has to be re- 

J J 
placed by a~ = a~D2 where D= (cos 2rcH. Arj)p, H being the reciprocal vector. The results can be used 
to estimate the errors in the positions of the known atoms. In particular, the normalized reliability 
index R1 =~]lF2vl- IFel/a~l/Z, lF2vl has been worked out as a function of aA both for centrosymmetric 
and non-centrosymmetric crystals, which enables one readily to estimate aA and hence D. For the centro- 
symmetric case R1 is simply given by RI = ]/'20 + aA) + ]/2--0 - aa) -  2. 

1. Introduction 

In the first three parts of this series (part I: Rama- 
chandran, Srinivasan & Sarma, 1963; part II: Srini- 
vasan, Sarma & Ramachandran, 1963a; part III: Srini- 
vasan, Subramanian & Ramachandran, 1964) the prob- 
ability distributions of the structure amplitudes ]F2v] 
and IFPI of two crystals containing N and P atoms and 
various variables connected with them, such as the dif- 
ference, product and the quotient, were considered. The 
results were shown to be useful in testing the 'related- 
ness' or 'isomorphism' between a pair of crystals (see 
also Ramachandran & Srinivasan, 1963; Srinivasan, 
Sarma & Ramachandran, 1963b). It was pointed out 
in part IV (Srinivasan & Ramachandran, 1965) that 
the results obtained earlier were particularly applicable 
to the data on the 'observed' and 'calculated' structure 
factors during the early stages of a crystal structure 
analysis, when only a part of the structure is known. 
It was also shown in part IV that in such a case the 
proper types of variable to consider are the ones in 
which the IF2vl and ]tip[ enter in their normalized form. 
In particular, the proper difference variable was shown 
to be 6, the normalized difference, defined by 

6=yN--yP=(IFNI/aN--IFPI/aP) . (1) 

(The notation of the earlier parts will be continued in 
this part also.) 

* Contribution 166 from the Centre of Advanced Study in 
Physics, University of Madras. 

The study of the distribution P(6) led to the suggest- 
ion of a new reliability index R1, termed the normalized 
reliability index defined by 

R, = •]lF2v[- [FPI/al [/ZlF2vl • (2) 

R1 is related to 6 and in fact R1 = (161)/(YN) and could 
therefore be worked out theoretically from the avail- 
able distribution P(6). The value of RI for any structure 
could be used to assess the accuracy of the assumed 
positions of the P atoms by comparing them with the 
theoretical values available for the related (correct) and 
unrelated (incorrect) cases. 

However, as will be clear from what was mentioned 
above, only two limiting situations were considered 
earlier, namely one in which there are no errors in the 
positions of the P atoms and the other in which the 
errors are so large that the P atoms could be taken to 
be in completely wrong positions. It is obvious that in 
actual practice, the situation would correspond to one 
in between, namely when there are finite errors in the 
coordinates of the P atoms. The value of R1 for any 
such practical case would depend on the magnitudes 
of the errors drj in the positions of the P atoms, (in 
addition to the actual proportion of the P-atoms in the 
structure). Thus, there should exist quantitative rela- 
tions between the two. In this paper we shall be pri- 
marily concerned with examining this aspect. We shall 
thus work out the various distributions considered ear- 
lier for the general case when the errors in the coordin- 
ates of the P atoms are finite. 
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As is to be expected, the related and unrelated cases 
turn out to be limiting cases of the problem considered 
here. 

It may be mentioned that Luzzati (1952) has con- 
sidered the statistical distribution of the difference bet- 
ween observed and calculated structure factors in rela- 
tion to the errors in the atomic coordinates. His treat- 
ment is, however, limited to the case when the calcul- 
ated structure factors include all the atoms in the unit 
cell (i.e. P= N in our notation), while the problem we 
are concerned with here is more general and is valid for 
the inclusion of any fraction P of the N atoms for cal- 
culating the structure factors. Luzzati's results should 
therefore be expected to come out as a limiting case of 
the present problem when P ~ N, and in fact they do, 
as will be shown later. 

Thus in effect, this paper is an attempt to synthesize 
the treatments available for the two different but limi- 
ted aspects of the general problem of distribution of 
the observed and calculated structure factors, namely 
(a) when the latter do not necessarily include all the 
atoms, and (b) when there are finite errors in the co- 
ordinates of the atoms and all the atoms in the unit 
cell are included in the structure factor calculation• 

The interesting result that comes out of this study 
is that there exists a formal identity of the problem 
of the statistical distibution arising out of the differences 
in scattering power and that due to errors in atomic 
coordinates• One is dependent on the parameter re- 
presented by trl = tr,/trlv and the other by D = (cos 2rcH 
• Arj) and the expressions for probability distributions 
and other quantities in terms of trt and D come out to 
be identical. 

For reasons mentioned already, we shall treat the 
problem in this paper mainly from the point of view of 
the relation between observed and calculated structure 
factors. The results, however, can also be applied for 
testing the relatedness or isomorphism between differ- 
ent crystals, if necessary. 

Non-centrosymmetric case 
Consider a non-centrosymmetric crystal containing N 
atoms having position vectors rj ( j =  1 to N) and denote 

Y 

X 
Fig. 1. A r g a n d  d iagram showing the relat ion 

between the various vectors• 

the structure factors corresponding to rj as Fly. When 
the observational errors are negligible we can assume 
that the observed structure ampli tudes F~r would lead, 
after final refinement of the structur e, to these position 
vectors rj. The structure factor corresponding to P out 
of the N atoms will be denoted by F , ,  this being calcul- 
ated from the 'true' coordinates r j ( j =  1 to P)  of the P 
out of the N atoms• If now we take a set of coordinates 
r i ( j =  1 to P) for the P atoms, differing from rj by 
Arj the structure factor corresponding to r 7 will be 
denoted by F~. The discrepancies between F~,'s and 
F~v's will thus be, in general, due to two causes - first 
to the fact that not all atoms have been used in the 
calculation of the F~,'s and secondly to the fact that the 
positions of the P-atoms used differ from their true 
values. The relations between the various structure fac- 
tors are brought out on the Argand diagram in Fig. 1, 
where the symbol Q stands for the remaining atoms 
(N=P+Q). Here, Fp=F~e+AFp and Flv=Fp+FQ. 
The significance of Vp in Fig. 1 will be clear in §4. 

To start with, we observe that when the errors are 
all zero, AFp = 0 and the discrepancy Fly--Fag = A (say) 
(see Fig. 1) is only due to FQ. This corresponds to the 
'related case' considered earlier. In the general case 
when Ar~ are finite and P¢N,  both FQ and AFp con- 
tribute to the difference A. When the Arfs become very 
large, the two structure factors FN and Fag can be con- 
sidered to be effectively independent of each other. 
This corresponds to the 'unrelated case' of the earlier 
parts. 

Let us first consider the probability distribution 
P(IF~.[; IFPI) of [F~[ for a given IFPI• This can be ob- 
tained from expression (45), p. 806 of Luzzati* (1952) 
with appropriate changes in the notation to suit this 
paper. Thus we get 

' cr 2 (1 - D 2) R 

a 2 ( 1 -- D E) 

where 7 is the angle between F~. and F .  and D =  
(cos 2zcH. Arj) . .  The integral in equation (3) may be 
integrated in terms of the Bessel functions of imagin- 
ary argument Io(x), and thus we have 

2lEVI 2DIF.I  IF~,l 
P([F~,I; IF . I )=  a2e(l_DZ ) 1o[ a 2 e ( l _ D 2 ) ]  

{ -  [F~'IZ+D2[F"IZ]e .j. (4a) × e x p  

It is interesting to compare this expression with the 
distribution obtained for the related case (expression 
(4), part  I) which is given by 

* The expression given by Luzzat i  is actual ly  the condi-  
t ional distribution of his z (= levi) given t (= IFol), although 
the form in which he has given it does not express it explicitly. 
Note that, in our notation, his z=lF~l, t=lFpl and ~=tr~,2. 

A C 19 - 9* 
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2]FM [ 2]FM IFPI ] 
P (IFNI;IFP[)= --~--  Io a~ 

x exp 1--IFMZ+IFPIE} (4b) 
a~ 

The close similarity between the two is obvious. In fact 
the formal identity between the two cases is more 
clearly brought out if we consider the normalized vari- 
ables. Thus, defining 

Ol--~Tp/O'~, 0"22=G2p/O'N 2 yN= IFM/am YP= IFPl/crP, 2_ 2 2 
(5a) 

so that a ~ + a ~ = l ,  P(ylv; yP) can be deduced from 
expression (4b) to be 

2yN yNYP 
P(yN;  yP) = 62 Io [ 2al ] 

{ a , y , } .  (6a) x exp y}+  2 2 

Similarly, from expression (4a) we obtain 

2y~e [2Dy~yp] 
P(Y~; YP) = 1 -D  2 Io i Z-~  j 

x exp { - y~ez + Dz y2e - D 2 . (6b) 

Expressions (6a) and (6b) may be seen to be identical 
in form, if we consider that the parameter D in (6b) 
plays the same role as al in (6a) (Note a2 = 1 -a~).  We 
shall discuss the physical significance of this later but 
shall now make use of the above result to work out 
the expression for the general case, namely for the 
calculation ofP([FNI; IF~,[). For the reasons mentioned 
earlier, we shall treat the problem in terms of the 
normalized variables. Thus, we may write the required 
distribution P(yN; y~) as 

= l;  P(yN;YP); P(Y~';YCe)dYP (7) P(yN; Y~) 

where P(ylv; yP) is given by (6a). P(yp; Y~e) can be 
obtained from (6b) since 

P(Je; Y~') P(YP) (8) 
P(YP ; Y~e) = p(yce) 

This gives 
2yp [ 2Dy~ yp ] 

pCvv; y/,) - 1-D  I0 1-D  

/ + / 
x exp [ 1 - -  D2 _ , (9) 

which, when compared with (6b), shows that yp and 
y~ have simply interchanged their roles. It might be 
noted that this symmetrical form of the expressions is 
a consequence of the normalized form of the variables 
we have chosen. It may be verified that such a result 
does not hold good, for instance, when we consider 
the pair of distributions of the structure amplitudes 

themselves, namely P(IFM; [FPI) and P(IFPI; IFM). 
Substituting (6a) and (9) in (7), we obtain 

2 Dy~yp ] [2a, yNyp] 
4ylvy~ I0[ i_--D~ ]I0 P(YN; Y~,) = I ;  a 2 ( 1 -  D 2) [ ~r~ ] 

D2y~+Y~ /exp ] a~Y2v+Y~V} dyt,. (10) 
x exp I -  1 --  D 2 f l a 2  

This integral can be evaluated (see Appendix 1), and it 
reduces to 

2yN [ 2a,DyCeyN ] 
P(yN; YCe) = a2+a2(l_D2 ) I0 a 2 + a 2 ( l _ D 2  ) 

{ Y~+a2 D2yj, 2 } 
x exp -- a~+o.2(l_D2) • (11) 

Let us now define two new symbols 

-2 ~ rr2/-~2 A--~,I~. .  , a2=a~+~(1-D 2) (12a) 

Note that a~ and a~ have the property that 

a~ + cr~ = 1 . (12b) 

With these new symbols, equation (11) reduces to the 
simple form 

2y~ [ 2aA yN y~ ] 
P(YN; YCe) = a----~B I0 a2 

,,2 ±,,2 ,,c2 } 
x exp - - ~ "  vA :,i*j (13) a~ 

which is exactly similar to expressions (6a) and (6b). 
The formal identity of this final expression for the 
general case with expressions (6a) and (6b) is very in- 
teresting. It will be noticed that when the errors Arj 
are all zero, D equals unity, so that O'A ~---O'1 and aB = a2, 
and expression (13) reduces to (6a) of the related case, 
as obviously it should. On the other hand when P = N, 
we see that al = 1 so that aa = D and aB = ]/1 - D z and 
expression (13) reduces to that in (6b) (with P=N). 
This is also to be expected physically, since the dis- 
crepancies in this case are entirely due to the errors in 
the coordinates. Lastly, when the errors are large, D 
tends to zero, so that era --> O, aB --+ 1, and expression 
(13) tends to 

P(y~T; y~)--+ 2yNexp(--y~v). (14) 

This corresponds to the unrelated case and is depend- 
ent of yj,. 

The distribution of the actual structure amplitudes 
can be obtained by a simple transformation from (13). 
It is given here, since it may be useful. Thus 

21FM [ 2D!_F~_q I F_~ ] 
P(IFNI; IF~,I) = a~ + a z (1 - D 2 ~  - Io La~ + a~(1 -- D2)] 

/ D2IFJ'12+IFN] 2 I 
(15) x e x p ] -  a~+aZp(l_DZ) /" 

Centrosymmetric ease 
In view of the details given for the non-centrosym- 

metric case, only an outline of the derivation will be 
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given for the present case. From equation (11) of part 
IV, we have 

/ 

P(YN; Ye) = V 
2 

7r a~ 

YN + al Ye al YNYP (16) xexp  2a~ cosh - - -~ - - - -  . 

The distribution P(yP; y~) may be shown to be given 
by (see Appendix II): 

P(yP; y})=  I/~--,-D2 ~ -  - 2 (1_D2  ) 

x c ° s h [  yPyceD]I-D 2 . (17) 

Substituting (16) and (17) in (7), we have 

P(YN;Y~,) = 7ccr2 1 _ ~  ~ 0 exp 2az2 

l 2 (1 - D 2) a2 2 a 

cosh [ YPYCeDI_D2 ] ] dyp. (18) )< 

The integral can be evaluated (See Appendix III) and 
it reduces to 

P(y~v; y.g) = [azz +a~ (l_D2)]÷ 

yN + a~ DZy$2 
x exp 2 [az2+a~(1 _ D2) ] (19) 

x c o s h [  Dalyuy~e ] =[ /  2_ 

- 2a  2 cosh ~ 1. (20) 

The identity of form of expressions (16), (17) and 
(20) is noteworthy, and follows exactly the results der- 
ived for the non-centrosymmetric case. 

As before, for convenience of reference, the distrib- 
ution of the actual structure amplitudes obtained from 
(20) is given below: 

P(IFNI; If~, l)= [a~+a2e(l_D2)] ~ 

IFNI2+deO21F~elZl. [ levi If~lO 1 
x exp - 2[o.~+a2e(l_D2)] / x cosh / a ~ - ~ - - ~ } 2 )  / 

(21) 

3. The distribution of the difference, 
product and quotient of the quantities FN and F~, 

The formal identity of the expressions for the distrib- 
utions in the present problem with those considered in 
earlier parts makes it possible to use many of the res- 

ults obtained earlier, with an appropriate reinterpret- 
ation of the parameters concerned. However, we shall 
discuss mainly the results concerning the normalized 
variables (parts II to IV) in view of the simplicity of 
interpretation that ensues. Moreover, in order to avoid 
confusion in notation, the variables for the present 
case will all be denoted by a superscript e. This is used 
to denote that it corresponds to the general case in 
which the P (out of the N) atoms used in the structure 
factor calculation have finite errors in their coordin- 
ates. Thus, the normalized product, quotient and dif- 
ference variables are denoted respectively by Z e, v e and 
d c. Their distributions are all obtained by simply re- 
placing the parameter al in the corresponding expres- 
sions for the related case of the earlier parts (parts II 
to IV) by the parameter aA. For convenience, a sum- 
mary of the formulae with this simple alteration is 
given in Table 1. It is not necessary to reproduce the 
various curves. They are the same as the figures given 
in the earlier parts, with the only difference that the 
ordinate is to be construed as the appropriate variable 
for the general case (namely Z c, v c and 6 c as the case 
may be in Parts II, III and IV respectively), while the 
abscissa should in all cases be treated as a 2 instead of a 2. 

Needless to say, the other parameters and tests based 
on the normalized variables such as R1, (Z )  etc. could 
also be taken over for the present case, with the param- 
eter al simply replaced by aA. 

4. Discussion 

Before entering into a discussion of the results and 
their applications, we might make a few remarks here 
regarding the equivalence result obtained in § 2. A 
comparison of expressions (4a), (4b) and (15) shows 
that instead of the parameter a~ in (4b), a~ + a2e(1 - D 2 )  

occurs in (15), that is the sum of the terms a~ and 
a ~ ( 1 - D  2) occurring individually in (4b) and (4a) res- 
pectively. This in fact is to be expected from the phys- 
ical nature of the origin of the difference between F:v 
and F~g as shown in Fig. 1. It will be noticed that this 
difference A = FN-F~e arises from two components (i) 
AFp=Fp-Fg  and (ii) FQ. Taking AFp alone, it is 
convenient (Luzzati, 1952) to decompose it into two 
vectors; one parallel to Fp equal to ( D -  1)Fp and the 
other, say Vp, equal to A F p - ( D -  1)F~ (Fig. 1). It can 
be shown (Luzzati, 1952) that the distribution of the 
magnitude of the component Vp has a Rayleigh dis- 
tribution* given by 

21VPI [ IVPI 2 / 
P(lVPI)dlVPI = a2e(l_DZ ) exp l -  -aZe(l_D2 ) / 

x dl gPI (22) 

* We use the term Rayleigh distribution to denote a distribu- 
tion of the type P(r)dr=(2r/~2) exp (-r2/o~2)dr (e.g. see p. 181 
of Parzen, 1960). The distribution of the magnitude r = I/(x 2 + yZ) 
of the resultant vector r in a two-dimensional random walk 
problem has essentially this distribution, where the rectangular 
components x and y have each a Gaussian distribution with a 
characteristic 0 .2 .~ ~ 2 / 2 ,  
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and is thus independent of the orientation of the 
vector in the Argand plane and also of the value of Fp. 
This could be compared with the distribution of IFd = 
IF~r-FPI, which is well-known to be 

21FQI exp { IFQI2 
P(IFQI)dlFQI = a-~o _ -  ---~-g---j dlFo, I (23) 

(see also part I). The identity of forms of expressions 
(22) and (23) is noteworthy. Also we have 

Fp=DF,g + Vp, FN=Fp+ FQ (24) 

so that Vp and FQ play identically parallel roles in the 
two distributions P(Fp; DFS,) and P(FN; Fp) with the 
only difference that we have actually worked out 
P(Fp; F~) which can be obtained from P(Fp; DF[,) in 
a very simple way since D is a constant. 

We now have from (24a) and (24b), the result that 
F2v=DF§+ Vp+FQ where the distributions of Vp and 
FQ are given by (22) and (23) respectively. Since the 
vectors Vp and FQ arise from independent causes, their 
sum will have the same distribution as (22) and (23), 
with the only difference that the "a  2'' will be the sum 

of those occurring in (22) and (23), namely equal to 
~ o + a 2 ( 1 - D 2 ) .  When these factors are taken into ac- 
count, the identity of forms of expressions (4a), (4b) 
and (15), as well as the relations between the param- 
eters occurring in them, become obvious. 

The normalized reliability index 

In the light of the results obtained in the earlier 
sections of this paper, the interpretation and use of 
some of the tests developed in the earlier parts become 
particularly elegant. In particular, let us consider the 
normalized reliability index Ra. If we define R1 as 

RI=S IIF~l-IF[,llalllS IF~vl, (25) 
all the discussions regarding this quantity given in part 
IV can be taken over completely, with the only differ- 
ence that al of part IV has now to be replaced by aa. 
Thus, for instance, for a centrosymmetric crystal we 
have (analogous to equation (28) of part IV) 

R1 = ]/2(1 +o' .4)+ 1 /2 (1 -o ' . 4 ) -  2 ,  (26) 

Table l(a). Expressions for the probability distribution functions*" non-centrosymmetric case 

Variable Function , General Unrelated 

Ze=YNYPC P(Zc) 4 Z c l ° \ ~ ]  K°|-=--y" \ o n - /  4ZeK°(2Zc) 

v e =y~/y~C p(v c) 
2vcaB2(1 + v c2) 2v c 

[(1 + re2) 2 - -  4aA2Ve2] 3/2 (1 + v*2) 2 

~c  = ( y l v -  Y ~ 9  S 
o0  

p(die)1" 2 exp (-~e2/tTB 2) X exp (--x) Io(aa x) dyp c 
0 or 16el 

where x = 2y~e(y~ e + t~e)/O'B 2 

2 exp (--~cZ/trB2) I:or l 6cl 2y~e(Y~e + t~e) 
X exp { -- 2ype(y~ e + ~e) }dy~e 

* The expressions for the related case are not listed. They are obtained by putting D= 1 (i.e. aa=trl) in the expressions for 
the general case. The unrelated case is obtained by putting D = 0 (aA =0) in the general case. 

? The lower limit is 0 for d~ e > 0 and I~¢1 for ~ < 0. 

Table l(b). Expressions~ for the probability distribution functions" centrosymmetric case 

Variable Function General Unrelated 

Ze = y~ y~e P (ze) n a---~2 cosh \--~T-2 ] Zeaa ~ ( ~ Zc ) --~2 1(o(Z c) 

ve=YNlY~ c Ply c) 
2 aB(1 + V c2) 2 1 
n [(1 +Ve2)2--4aA2V e2] n (1 + V c2) 

1 [ exp { -  6c214 (1 + aa)} [1 -- err 6e/21/(--i-Z~aa)] 

exp { - -  ~ c 2 / 4 ( 1  - aa)} 
I / ~ i - ~ )  

[1 - erf 6e/2V(1 + aa)]] 

1 - ~  exp ( -  - ~ )  (1 - erf ~c2/2) 

See first footnote to Table 1 (a) 
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which reduces to the equation (28) of part IV when the 
errors Arj are all zero, i.e. D =  1, so that aA=a~. On 
the other hand when P = N, we have al = 1 and aA = D. 
In this case, RI reduces to the conventional reliability 
index R and we obtain 

R = 1/2-(1 +D)  + Vff. ( l - D )  - 2. (27) 

This expression is identical with that derived by Luz- 
zati (1952). Unfortunately, for a non-centrosymmetric 
crystal, no such elegant expression can be obtained for 
Rx. However, the variation of R1 with aA for the two 
cases is shown in Table 2. 

Table 2. Normalized reliability index R1 
as a function of aA 

Centrosymmetric Non-centrosymmetric 
aa  case case 
0.0 0.828 0.586 
0-1 0-826 0-583 
0.2 0.815 0.576 
0-3 0.798 0.563 
0.4 0.770 0.544 
0-5 0.733 0.516 
0.6 0.685 0.479 
0.7 0.620 0.434 
0.8 0.532 0.369 
0.9 0.399 0.273 
1.0 0 0 

Vice versa, if Rx is evaluated from the data for a 
crystal, then aa can be estimated from Table 2. Since 
al is known, a,4/al =D would provide an estimate of 
the errors in the atomic positions of the P-atoms used 
in the calculation of the structure factors. This will be 
useful in the early stages of a structure analysis, when 
a small number of atoms have been located, to check 
the accuracy of their locations. The tests indicated in 
the earlier parts provide only the values of the param- 
eter concerned (such as Ra) for the related case (or 
correct positions) and the unrelated case (completely 
wrong positions). Using these one could previously 
make only a sort of an estimate of the errors. Now, on 
the other hand, it is possible to obtain a value of the 
parameter D, which is directly related to the errors 
IArjl. 

In fact, from the definition of D, it is clear that it is 
a function of the reciprocal vector H, and hence of the 
Bragg angle 0. Hence, it becomes possible to separate 
the effect due to errors in the atomic coordinates by 
studying the variation of aA (=a~D) with 0. In this, 
the variation of at with 0 may not be as strongly dep- 
endent on 0 as D, and in any case it is known. This 
aspect is being tested practically and will be reported 
elsewhere. 

It may also be mentioned that the parameter (Z )  
and its analogue ( Z  c) may also be used to estimate the 
value of aa. Its use in structure analysis for judging 
the accmacy of atomic parameters seems to be an in- 
teresting possibility. The calculation of (Z  c) from a 
set of experimental data does not require a knowledge 

of the scale factor, and the value of aa may be obtained 
by use of the curves shown in Fig. 3 of part II or Tables 
I and II of Srinivasan, Sarma and Ramachandran 
(1963b). However, the range of variation of (Z  c) is less 
than that of R1, so that it is likely to be useful only 
in the very early stages of structure analysis. 

APPENDIX I 

Expression (10) can be written: 

4yN { D2a~y~2+ (1-D2)y~,'~ 
P(YN;Y~) = a22(l_D2 ) exp - ~-~i-Z-D~ ) ] 

lo  yP exp { -  3~e [ aEz+a12(1- DE)] ] ' ,  r 2D y~' yP ] x 

20"1y~vyp ] × Io[- ~ ]dy~. (A1) 

The integral in the above equation is of the form 

I ~ x lo(ax) exp ( lo(bx) ~ pEx2 ) dx.  (A2) 
o 

To evaluate this we use the result (Watson, 1944, p. 395) 

l ~o Jv(at ) Jv(bt ) t dt (--pEtE) exp  
o 

1 ab 

With appropriate substitutions (A2) reduces to 

1 exp~aE+bE/I0 ( (/t4t 

Substitution of 

y p = X ,  p 2 =  a~+a~(1-DE) 2y~eD 
-- a~(l_DZ) , a-- (I_DE) , 

b -  2yNal 

leads us to expression (l 1) given in the text. 

APPENDIX H 

For the centrosymmetric case, the law of distribution 
of AFp=Fag-Fp is given expression (34) of Luzzati 
(1952), which in our notation becomes 

[ A F p - ( D -  1)FPIE~ 1 _ _  exp - 
P(AFp)= I/2zcaEe (1 _ DE) 2a~-(~_D-~) j 

(A5) 
This is obviously the conditional distribution of AFp, 
given Fp. Since AFp = Fag-Fp we see that the law of 
distribution of Fag should be 

(Fag- DFp)E~ = -  1 exp - - ~ a a ~ ~ ) ) / .  
P(Fag; Fp) 1/2~_~(1_D2) 

(A6) 
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This consists of two possibilities, namely Fp and F§ 
having the same or opposite signs, so that separating 
out these two, we have 

1 [exp{(lF§l--DlFP])2} 
P(F§; Fp) = V2na2( l_D2  ) 2 a 2 ( l _ D 2  ) 

{_ (IF~I + DIFPI) 2 
2-@p (] ~-D-~ J ]  (A7) 

+ exp 

= [a~(I_D2)] ~. exp - 2o.2 ( l_D2)  

OlFel lEVI 
x cosh [ a ~ ( l _ D 2 )  ] . (A8) 

Since this involves only the magnitudes IF§[ and [Fp] 
it is seen that this is also the distribution, P(F§] ; ]FP[). 

Making the usual transformation in (A8), namely 
w r i t i n g  yN=[FNI/CrN and y~, = [FPle/ap, we obtain ex- 
pression (17) given in the text. 

A P P E N D I X  III  

The desired integral (18) can be written: 

2 [ (1 - D 2) y2 + a2 ~ D 2 y~2 ] 
n a2 (1 - D 2) exp l -  2 0"2 ( 1 -- D 2) / x 

x S °° exp { - [ ( 1 - D  z) a~+a~])~e } cosh [y~vye crl 
o 2 o .2 (1 - D 2) 0 .2 

[Y~eYPO] dyp 
x cosh l(-1-:-- O-~J " 

The integral in (A9) above is of the form 

i ~o exp (-p2x2) (ax) (bx) cosh cosh dx, 
0 

where 

p2 

-] 
(A9) 

( l - D 2 )  a2+a22 

2a22(1-D 2) 

(A10) 

, a=alyMa~, b=y~eD/(1-D2). 

Since we have the relation 

I_1/2(z) = ~ cosh z ,  (A 11) 

(A10) can be written in the form 

fo ~- ~ exp (-p2x2) I_m(ax ) I_l/2(bx ) x dx.  (A 12) 

The integral in (A12) is similar to (A2) considered in 
Appendix I, with the only difference that the order of 
the Bessel function is -½- in the former, while it is 
zero in the latter. Thus, using the same result (A3) of 
Appendix I, (A12) reduces to 

n v - ~ l  ~a2+b2 I ( a b )  
~- -~p2 exp ~-~p~--~I-xl2 ~ • (A13) 

Again making use of (A1)in (A13)and substituting for 
a,  b, p2, etc., we obtain the expression (19) given in 
the text. 
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The Absorption Correction in Crystal Structure Analysis 
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An exact method for computing the absorption correction for any polyhedral crystal is described. First 
an analytical formula is derived for the contribution to the diffracted intensity from a tetrahedron in 
which the path length of the rays is a linear function of the coordinates of the diffracting element, and 
it is then shown how the crystal is to be divided into such tetrahedra. A computer program for the 
IBM 1620 machine to compute the absorption correction is described. 

I n t r o d u c t i o n  

In crystal-structure analysis the basic observed quanti- 
ties are the intensities of the hkl refiexions. A number 

of corrections (Lorentz and polarization factors, ab- 
sorption correction) have to be applied to the observed 
intensities before they can be used as the basis of a 
structure determination, The absorption correction 


